25,932 research outputs found

    Multi-view Regularized Gaussian Processes

    Full text link
    Gaussian processes (GPs) have been proven to be powerful tools in various areas of machine learning. However, there are very few applications of GPs in the scenario of multi-view learning. In this paper, we present a new GP model for multi-view learning. Unlike existing methods, it combines multiple views by regularizing marginal likelihood with the consistency among the posterior distributions of latent functions from different views. Moreover, we give a general point selection scheme for multi-view learning and improve the proposed model by this criterion. Experimental results on multiple real world data sets have verified the effectiveness of the proposed model and witnessed the performance improvement through employing this novel point selection scheme

    Settlement prediction methods considering creep

    Get PDF
    2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Cycling of Rational Hybridization Chain Reaction To Enable Enzyme-Free DNA-Based Clinical Diagnosis

    Get PDF
    In order to combat the growing threat of global infectious diseases, there is a need for rapid diagnostic technologies that are sensitive and that can provide species specific information (as might be needed to direct therapy as resistant strains of microbes emerge). Here, we present a convenient, enzyme-free amplification mechanism for a rational hybridization chain reaction, which is implemented in a simple format for isothermal amplification and sensing, applied to the DNA-based diagnosis of hepatitis B virus (HBV) in 54 patients. During the cycled amplification process, DNA monomers selfassemble in an organized and controllable way only when a specific target HBV sequence is present. This mechanism is confirmed using super-resolution stochastic optical reconstruction microscopy. The enabled format is designed in a manner analogous to an enzyme-linked immunosorbent assay, generating colored products with distinct tonality and with a limit of detection of ca. five copies/reaction. This routine assay also showed excellent sensitivity (>97%) in clinical samples demonstrating the potential of this convenient, low cost, enzyme-free method for use in low resource settings

    Norcoclaurine Synthase-Mediated Stereoselective Synthesis of 1,1'-Disubstituted, Spiro- and Bis-Tetrahydroisoquinoline Alkaloids

    Get PDF
    The Pictet–Spenglerase norcoclaurine synthase (NCS) catalyzes the formation of (S)-norcoclaurine, an important intermediate in the biosynthetic pathway of benzylisoquinoline alkaloids. NCS has been used as a biocatalyst with meta-hydroxy phenethylamines and aldehydes for the preparation of single-isomer tetrahydroisoquinoline alkaloids (THIAs). Recently, it was also reported that some ketones can be accepted as substrates, including 4-substituted cyclohexanones and phenyl acetones. Here, we report the use of wild-type NCS and selected variants with aliphatic, cyclic, α-substituted cyclic, heterocyclic, and bicyclic ketones to access challenging non-natural THIAs. Remarkably, fused bicyclic ketones as well as diketones could also be accepted by some of the NCS variants, and in silico modeling was used to provide insights into the rationale for this

    PUK7 FACTORS INFLUENCING EARLY NEPHROLOGY CARE PRIOR TO HEMODIALYSIS INITIATION AMONG ELDERLY PATIENTS WITH END-STAGE RENAL DISEASE

    Get PDF

    Synchronous nanoscale topographic and chemical mapping by differential-confocal controlled Raman microscopy

    Get PDF
    Confocal Raman microscopy is currently used for label-free optical sensing and imaging within the biological, engineering, and physical sciences as well as in industry. However, currently these methods have limitations, including their low spatial resolution and poor focus stability, that restrict the breadth of new applications. This paper now introduces differential-confocal controlled Raman microscopy as a technique that fuses differential confocal microscopy and Raman spectroscopy, enabling the point-to-point collection of three-dimensional nanoscale topographic information with the simultaneous reconstruction of corresponding chemical information. The microscope collects the scattered Raman light together with the Rayleigh light, both as Rayleigh scattered and reflected light (these are normally filtered out in conventional confocal Raman systems). Inherent in the design of the instrument is a significant improvement in the axial focusing resolution of topographical features in the image (to ∼1 nm), which, when coupled with super-resolution image restoration, gives a lateral resolution of 220 nm. By using differential confocal imaging for controlling the Raman imaging, the system presents a significant enhancement of the focusing and measurement accuracy, precision, and stability (with an antidrift capability), mitigating against both thermal and vibrational artefacts. We also demonstrate an improved scan speed, arising as a consequence of the nonaxial scanning mode

    Observation of second-harmonic generation induced by pure spin currents

    Get PDF
    Extensive efforts are currently being devoted to developing a new electronic technology, called spintronics, where the spin of electrons is explored to carry information. [1,2] Several techniques have been developed to generate pure spin currents in many materials and structures. [3-10] However, there is still no method available that can be used to directly detect pure spin currents, which carry no net charge current and no net magnetization. Currently, studies of pure spin currents rely on measuring the induced spin accumulation with optical techniques [5, 11-13] or spin-valve configurations. [14-17] However, the spin accumulation does not directly reflect the spatial distribution or temporal dynamics of the pure spin current, and therefore cannot monitor the pure spin current in a real-time and real-space fashion. This imposes severe constraints on research in this field. Here we demonstrate a second-order nonlinear optical effect of the pure spin current. We show that such a nonlinear optical effect, which has never been explored before, can be used for the non-invasive, non-destructive, and real-time imaging of pure spin currents. Since this detection scheme does not rely on optical resonances, it can be generally applied in a wide range of materials with different electronic bandstructures. Furthermore, the control of nonlinear optical properties of materials with pure spin currents may have potential applications in photonics integrated with spintronics.Comment: 19 pages, 3 figures, supplementary discussion adde

    Ultrafast phase-change logic device driven by melting processes.

    Get PDF
    The ultrahigh demand for faster computers is currently tackled by traditional methods such as size scaling (for increasing the number of devices), but this is rapidly becoming almost impossible, due to physical and lithographic limitations. To boost the speed of computers without increasing the number of logic devices, one of the most feasible solutions is to increase the number of operations performed by a device, which is largely impossible to achieve using current silicon-based logic devices. Multiple operations in phase-change-based logic devices have been achieved using crystallization; however, they can achieve mostly speeds of several hundreds of nanoseconds. A difficulty also arises from the trade-off between the speed of crystallization and long-term stability of the amorphous phase. We here instead control the process of melting through premelting disordering effects, while maintaining the superior advantage of phase-change-based logic devices over silicon-based logic devices. A melting speed of just 900 ps was achieved to perform multiple Boolean algebraic operations (e.g., NOR and NOT). Ab initio molecular-dynamics simulations and in situ electrical characterization revealed the origin (i.e., bond buckling of atoms) and kinetics (e.g., discontinuouslike behavior) of melting through premelting disordering, which were key to increasing the melting speeds. By a subtle investigation of the well-characterized phase-transition behavior, this simple method provides an elegant solution to boost significantly the speed of phase-change-based in-memory logic devices, thus paving the way for achieving computers that can perform computations approaching terahertz processing rates.This is the author's accepted manuscript. The final version is published by PNAS here: http://www.pnas.org/content/early/2014/08/27/1407633111.full.pdf+html?with-ds=yes

    Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination.

    Get PDF
    Permanent damage to white matter tracts, comprising axons and myelinating oligodendrocytes, is an important component of brain injuries of the newborn that cause cerebral palsy and cognitive disabilities, as well as multiple sclerosis in adults. However, regulatory factors relevant in human developmental myelin disorders and in myelin regeneration are unclear. We found that AXIN2 was expressed in immature oligodendrocyte progenitor cells (OLPs) in white matter lesions of human newborns with neonatal hypoxic-ischemic and gliotic brain damage, as well as in active multiple sclerosis lesions in adults. Axin2 is a target of Wnt transcriptional activation that negatively feeds back on the pathway, promoting β-catenin degradation. We found that Axin2 function was essential for normal kinetics of remyelination. The small molecule inhibitor XAV939, which targets the enzymatic activity of tankyrase, acted to stabilize Axin2 levels in OLPs from brain and spinal cord and accelerated their differentiation and myelination after hypoxic and demyelinating injury. Together, these findings indicate that Axin2 is an essential regulator of remyelination and that it might serve as a pharmacological checkpoint in this process
    corecore